Abstract

Limit possibilities of state estimation under information constraints (limited information capacity of the coupling channel) for multi-input-multi-output (MIMO) nonlinear systems are evaluated. We give theoretical analysis for state estimation of nonlinear systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) with a first-order coder-decoder. It is shown that the upper bound of the limit estimation error is proportional to the upper bound of the transmission error. As a consequence, the upper bound of limit estimation error is proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). The results are applied to state estimation of a nonlinear self-excited mechanical oscillator and a reaction-wheel pendulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.