Abstract

This article studies the synchronization issue of fractional reaction-diffusion neural networks (FRDNNs) with time delay and mixed boundary condition. First, a novel boundary controller with constant-valued gain is designed, which only relies on the boundary state information. Subsequently, by virtue of Lyapunov direct technique and LMI approach, the Mittag–Leffler synchronization conditions are established. Besides, to effectively regulate the control gain, a fractional-order adaptive boundary controller is developed and the adaptive synchronization of FRDNNs is rigorously analyzed. Note that, the above control strategies are also workable for traditional integer-order reaction-diffusion neural networks. The developed theoretical analysis is supported eventually via a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.