Abstract

This research investigates the synchronization of distributed delayed discrete-time fractional-order complex-valued neural networks. The necessary conditions have been established for the stability of the proposed networks using the theory of discrete fractional calculus, the discrete Laplace transform, and the theory of fractional-order discrete Mittag–Leffler functions. In order to guarantee the global asymptotic stability, adequate criteria are determined using Lyapunov’s direct technique, the Lyapunov approach, and some novel analysis techniques of fractional calculation. Thus, some sufficient conditions are obtained to guarantee the global stability. The validity of the theoretical results are finally shown using numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call