Abstract

Self-similarity is a common feature among mathematical fractals and various objects of our natural environment. Therefore, escape criteria are used to determine the dynamics of fractal patterns through various iterative techniques. Taking motivation from this fact, we generate and analyze fractals as an application of the proposed Mann iterative technique with h-convexity. By doing so, we develop an escape criterion for it. Using this established criterion, we set the algorithm for fractal generation. We use the complex function f(x)=xn+ct, with n≥2,c∈C and t∈R to generate and compare fractals using both the Mann iteration and Mann iteration with h-convexity. We generalize the Mann iterative scheme using the convexity parameter h(α)=α2 and provide the detailed representations of quadratic and cubic fractals. Our comparative analysis consistently proved that the Mann iteration with h-convexity significantly outperforms the standard Mann iteration scheme regarding speed and efficiency. It is noticeable that the average number of iterations required to perform the task using Mann iteration with h-convexity is significantly less than the classical Mann iteration scheme. Moreover, the relationship between the fractal patterns and the input parameters of the proposed iteration is extremely intricate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.