Abstract

The impulsive synchronization of coupled neural networks with input saturation and the term of reaction–diffusion via a hybrid control strategy is investigated. In this paper, a hybrid controller is proposed, including impulsive controller with input saturation and intermittent controller. This type of hybrid controller can not only solve the periodic and aperiodic intermittent control, lower the update frequency of the controller, but also avoid the saturation phenomenon of impulsive control. Based on linear matrix inequalities (LMIs), and Jensen’s inequality, under a proposed suitable Lyapunov function, a series of sufficient conditions are established to guarantee the stability of the error system. Compared with the recent relevant impulsive saturation results, the polytopic representation method dealing with actuator saturation may make the synchronization criterion more universal and less restrictive. Finally, a numerical example is provided to verify the correctness and feasibility of the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call