Abstract

The article considers the impulsive synchronization for inertial neural networks with unbounded delay and actuator saturation via sampled-data control. Based on an impulsive differential inequality, the difficulties caused by unbounded delay and impulsive effect may be effectively avoid. By applying polytopic representation technique, the actuator saturation term is first considered into the design of impulsive controller, and less conservative linear matrix inequality (LMI) criteria that guarantee asymptotical synchronization for the considered model via hybrid control are given. As special cases, the asymptotical synchronization of the considered model via sampled-data control and saturating impulsive control are also studied, respectively. Numerical simulations are presented to claim the effectiveness of theoretical analysis. A new image encryption algorithm is proposed to utilize the synchronization theory of hybrid control. The validity of image encryption algorithm can be obtained by experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call