Abstract

The design, mathematical analysis, and testing results of the architecture of a new all-digital phase-locked loop system for synchronizing a voltage source DC-AC single-phase inverter with the low voltage utility grid are presented. The system which is based on the time-delay digital tanlock loop was simulated using matlab/simulink and was tested by subjecting the grid voltage to various perturbations similar to those which can occur in a real power system, such as voltage sags and nonlinear distortion of the grid voltage waveform. Results indicate that even in the presence of such perturbations the system achieved and/or re-gained synchronization within 100 ms. The proposed system is all-digital and can be readily implemented using a field programmable gate array and easily embedded into a power inverter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call