Abstract

This work deals with the synchronizations of two both coupled Hodgkin–Huxley (H–H) neurons, where the master neuron posses inner noise and the slave neuron is considered in a resting state, (without inner noise) and an exciting state (with inner noise). The synchronization procedure is done via a feedback control, considering a class of high order sliding-mode controller which provides chattering reduction and finite time synchronization convergence, with a satisfactory performance. Theoretical analysis is done in order to show the closed-loop stability of the proposed controller and the calculated finite time for convergence. The main results are illustrated via numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.