Abstract

We have used a focal stimulation method to study neurotransmission at synapses onto hippocampal pyramidal neurons in cultures derived from neonatal rats. Single functional boutons were visualized by activity-dependent preloading with the fluorescent dye FM1-43, then focally stimulated by localized application of elevated K + Ca 2+ solution via a puffer pipette, while postsynaptic currents were recorded under whole cell voltage clamp (Liu and Tsien, 1995). This paper gives a detailed description of the main properties of this experimental system and of information it has provided about fundamental properties of hippocampal synapses. Most of the experiments focused on excitatory postsynaptic currents (EPSCs), but preliminary recordings of inhibitory events (IPSCs) are also reported here. The unitary EPSCs at individual synapses varied greatly in amplitude, but were relatively uniform in their time course. The frequency of the synaptic events was greatly reduced by lowering the external Ca 2+ concentration or by application of baclofen, a GABA B receptor agonist. Frequent repetitive stimulation produced a decline in the incidence of EPSCs that was readily reversed upon rest. We attribute the decline to exhaustion of a pool of available vesicles; typically, recovery proceeded with a time constant of ~40 sec (23 °C), and involved a vesicular pool capable of generating ~90 EPSCs without recycling. While synaptic currents were broadly distributed in amplitude (Bekkers et al., 1990), this distribution was remarkably similar at multiple synapses on a given postsynaptic neuron. The median synaptic current amplitude varied 4-fold across different cells, decreasing markedly with increasingly dense synaptic innervation. The implications of these results for cellular signal processing and quantal analysis are discussed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.