Abstract

Long-term synaptic plasticity is an important mechanism underlying the development of cortical circuits in a number of brain regions. In barrel cortex NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) play a critical role in the development and experience-dependent plasticity of the topographical map of the rodent whiskers. However, the mechanisms underlying the induction and expression of these forms of plasticity are poorly characterised. Here we investigate the role of PKC in the regulation of synaptic strength in neonatal barrel cortex using patch-clamp recordings in brain slices. We demonstrate that PKC activity tonically maintains AMPA receptor-mediated transmission at thalamocortical synapses, and that basal transmission can be potentiated by PKC activation using postsynaptic infusion of phorbol ester. Furthermore, we show that induction of NMDAR-dependent LTP requires PKC activity. These findings demonstrate that PKC is required for the regulation of transmission at thalamocortical synapses, the major ascending sensory input to barrel cortex. Thalamocortical inputs in barrel cortex only express LTP during the first postnatal week during a critical period for experience-dependent plasticity in layer IV. Therefore, the requirement for PKC in LTP suggests an important role for this kinase in the development of the barrel cortex sensory map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.