Abstract

Leucine 5-enkephalin- and choline acetyltransferase-containing, presumably cholinergic, neurons revealed by dual label immunocytochemistry were found in the shell and core of the rat nucleus accumbens. The perikarya, dendrites and boutons of cholinergic neurons were labeled with the diaminobenzidine precipitate, whereas those of the enkephalinergic neurons were labeled with silver-intensified colloidal gold. Ultrastructural examination revealed that both the enkephalinergic and the cholinergic boutons generally formed symmetric synapses with unlabeled dendrites and, occasionally, with unlabeled dendritic spines. Enkephalin-immunoreactive terminals which were much larger than cholinergic boutons, seldom apposed or formed synapses with cholinergic structures in the nucleus. In the core, cholinergic terminals were frequently found apposed to enkephalin-immunoreactive dendrites and perikarya and were often seen in synaptic contact with enkephalinergic dendrites, whereas in the shell, cholinergic boutons seldom apposed or contacted enkephalinergic targets. These findings show that enkephalinergic and cholinergic neurons differ in their synaptic arrangements within the nucleus accumbens and provide further evidence for differentially organized intrinsic connections of shell and core territories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call