Abstract
The function of neuronal circuits, and its perturbation by psychoactive molecules or disease-associated genetic variants, is governed by the interplay between synapse activity and synaptic protein localization and synthesis across a heterogeneous synapse population. Here, we combine in situ measurement of synaptic multiprotein compositions and activation states, synapse activity in calcium traces or glutamate spiking, and local translation of specific genes, across the same individual synapses. We demonstrate how this high-dimensional data enables identification of interdependencies in the multiprotein-activity network, and causal dissection of complex synaptic phenotypes in disease-relevant chemical and genetic NMDAR loss of function that translate in vivo . We show how this method generalizes to other subcellular systems by deriving mitochondrial protein networks, and, using support vector machines, its value in overcoming animal variability in phenotyping. Integrating multiple synapse information modalities enables deep structure-function characterization of synapse populations and their responses to genetic and chemical perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.