Abstract
Interneuron populations within the nucleus accumbens (NAc) orchestrate excitatory-inhibitory balance, undergo experience-dependent plasticity, and gate-motivated behavior, all biobehavioral processes heavily modulated by endogenous cannabinoid (eCB) signaling. While eCBs are well known to regulate synaptic plasticity onto NAc medium spiny neurons and modulate NAc function at the behavioral level, how eCBs regulate NAc interneuron function is less well understood. Here, we show that eCB signaling differentially regulates glutamatergic and feedforward GABAergic transmission onto NAc somatostatin-expressing interneurons (NAcSOM+) in an input-specific manner, while simultaneously increasing postsynaptic excitability of NAcSOM+ neurons, ultimately biasing toward vHPC (ventral hippocampal), and away from BLA (basolateral amygdalalar), activation of NAcSOM+ neurons. We further demonstrate that NAcSOM+ are activated by stress in vivo and undergo stress-dependent plasticity, evident as a global increase in intrinsic excitability and an increase in excitation-inhibition balance specifically at vHPC, but not BLA, inputs onto NAcSOM+ neurons. Importantly, both forms of stress-induced plasticity are dependent on eCB signaling at cannabinoid type 1 receptors. These findings reveal eCB-dependent mechanisms that sculpt afferent input and excitability of NAcSOM+ neurons and demonstrate a key role for eCB signaling in stress-induced plasticity of NAcSOM+-associated circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.