Abstract

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of nigral dopamine neurons. The deposition of fibrillary aggregated α-synuclein in Lewy bodies (LB), that is considered to play a causative role in the disease, constitutes another key neuropathological hallmark of PD. We have recently described that synapsin III (Syn III), a synaptic phosphoprotein that regulates dopamine release in cooperation with α-synuclein, is present in the α-synuclein insoluble fibrils composing the LB of patients affected by PD. Moreover, we observed that silencing of Syn III gene could prevent α-synuclein fibrillary aggregation in vitro. This evidence suggests that Syn III might be crucially involved in α-synuclein pathological deposition. To test this hypothesis, we studied whether mice knock-out (ko) for Syn III might be protected from α-synuclein aggregation and nigrostriatal neuron degeneration resulting from the unilateral injection of adeno-associated viralvectors (AAV)-mediating human wild-type (wt) α-synuclein overexpression (AAV-hαsyn). We found that Syn III ko mice injected with AAV-hαsyn did not develop fibrillary insoluble α-synuclein aggregates, showed reduced amount of α-synuclein oligomers detected by in situ proximity ligation assay (PLA) and lower levels of Ser129-phosphorylated α-synuclein. Moreover, the nigrostriatal neurons of Syn III ko mice were protected from both synaptic damage and degeneration triggered by the AAV-hαsyn injection. Our observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call