Abstract

Hamiltonian systems are differential equations that describe systems in classical mechanics, plasma physics, and sampling problems. They exhibit many structural properties, such as a lack of attractors and the presence of conservation laws. To predict Hamiltonian dynamics based on discrete trajectory observations, the incorporation of prior knowledge about Hamiltonian structure greatly improves predictions. This is typically done by learning the system's Hamiltonian and then integrating the Hamiltonian vector field with a symplectic integrator. For this, however, Hamiltonian data need to be approximated based on trajectory observations. Moreover, the numerical integrator introduces an additional discretization error. In this article, we show that an inverse modified Hamiltonian structure adapted to the geometric integrator can be learned directly from observations. A separate approximation step for the Hamiltonian data is avoided. The inverse modified data compensate for the discretization error such that the discretization error is eliminated. The technique is developed for Gaussian processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.