Abstract
An extension of the concept of Kolmogorov entropy to quantum mechanical systems is given. Using the Kolmogorov entropy as a common basis for discussion, the onset of chaotic motion in classical mechanical and quantum mechanical systems is compared. It is found that if the spectrum of the system is discrete, the Kolmogorov entropy is zero, and therefore that a bounded quantum mechanical system cannot have chaotic motion like that observed for a corresponding classical mechanical system. This analysis leads to the prediction that if the distributions of states are similar for two bounded systems which in the classical limit have, respectively, quasiperiodic and chaotic motion, wave packets for the two systems decay at similar rates as found by Brumer and Shapiro. The relationship between the defined Kolmogorov entropy, previous interpretations of ’’KAMlike’’ onset of chaos in quantum mechanical systems, and the role played by preparation and observation of a system in influencing the intramolecular dynamics, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.