Abstract

The aim of the present paper is to provide a new aspect of the $p$-adic Teichm\"{u}ller theory established by S. Mochizuki. We study the symplectic geometry of the $p$-adic formal stacks $\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of fixed genus $g>1$) and $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ (= the moduli classifying $p$-adic formal curves of genus $g$ equipped with an indigenous bundle). A major achievement in the (classical) $p$-adic Teichm\"{u}ller theory is the construction of the locus $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}}$ in $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ classifying $p$-adic canonical liftings of ordinary nilpotent indigenous bundles. The formal stack $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}}$ embodies a $p$-adic analogue of uniformization of hyperbolic Riemann surfaces, as well as a hyperbolic analogue of Serre-Tate theory of ordinary abelian varieties. In the present paper, the canonical symplectic structure on the cotangent bundle $T^\vee_{\mathbb{Z}_p} \widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ of $\widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$ is compared to Goldman's symplectic structure defined on $\widehat{\mathcal{S}}_{g, \mathbb{Z}_p}$ after base-change by the projection $\widehat{\mathcal{N}}_{g, \mathbb{Z}_p}^{\mathrm{ord}} \rightarrow \widehat{\mathcal{M}}_{g, \mathbb{Z}_p}$. We can think of this comparison as a $p$-adic analogue of certain results in the theory of projective structures on Riemann surfaces proved by S. Kawai and other mathematicians.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call