Abstract
Let S be a compact hyperbolic Riemann surface of genus \({g \geq 2}\). We call a systole a shortest simple closed geodesic in S and denote by \({{\rm sys}(S)}\) its length. Let \({{\rm msys}(g)}\) be the maximal value that \({{\rm sys}(\cdot)}\) can attain among the compact Riemann surfaces of genus g. We call a (globally) maximal surface Smax a compact Riemann surface of genus g whose systole has length \({{\rm msys}(g)}\). In Section 2 we use cutting and pasting techniques to construct compact hyperbolic Riemann surfaces with large systoles from maximal surfaces. This enables us to prove several inequalities relating \({{\rm msys}(\cdot)}\) of different genera. In Section 3 we derive similar intersystolic inequalities for non-compact hyperbolic Riemann surfaces with cusps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.