Abstract

A symmetry-adapted perturbation theory based on Kohn-Sham determinants [SAPT(KS)] and utilizing asymptotically corrected exchange-correlation potentials has been applied to the He2, Ne2, (H2O)2, and (CO2)2 dimers. It is shown that SAPT(KS) is able to recover the electrostatic, first-order exchange, second-order induction, and exchange-induction energies with an accuracy approaching and occasionally surpassing that of regular SAPT at the currently programmed theory level. The use of the asymptotic corrections is critical to achieve this accuracy. The SAPT(KS) results can be obtained at a small fraction of the time needed for regular SAPT calculations. The robustness of the SAPT(KS) method with respect to the basis set size is also demonstrated. A theoretical justification for high accuracy of SAPT(KS) predictions for the electrostatic, first-order exchange, and second-order induction energies has been provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call