Abstract

The arithmetic mean/geometric mean-inequality (AM/GM-inequality) facilitates classes of non-negativity certificates and of relaxation techniques for polynomials and, more generally, for exponential sums. Here, we present a first systematic study of the AM/GM-based techniques in the presence of symmetries under the linear action of a finite group. We prove a symmetry-adapted representation theorem and develop techniques to reduce the size of the resulting relative entropy programs. We study in more detail the complexity gain in the case of the symmetric group. In this setup, we can show in particular certain stabilization results. We exhibit several sequences of examples in growing dimensions where the size of the problem stabilizes. Finally, we provide some numerical results, emphasizing the computational speed-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.