Abstract

Understanding how local potentials affect system eigenmodes is crucial for experimental studies of nontrivial bulk topology. Recent studies have discovered many exotic and highly non-trivial topological states in non-Hermitian systems. As such, it would be interesting to see how non-Hermitian systems respond to local perturbations. In this work, we consider chiral and particle-hole -symmetric non-Hermitian systems on a bipartite lattice, including SSH model and photonic graphene, and find that a disordered local potential could induce bound states evolving from the bulk. When the local potential on a single site becomes infinite, which renders a lattice vacancy, chiral-symmetry-protected zero-energy mode and particle-hole symmetry-protected bound states with purely imaginary eigenvalues emerge near the vacancy. These modes are robust against any symmetry-preserved perturbations. Our work generalizes the symmetry-protected localized states to non-Hermitian systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.