Abstract
A prominent feature of some one-dimensional non-Hermitian systems is that all right-eigenstates of the non-Hermitian Hamiltonian are localized in one end of the chain. The topological and trivial phases are distinguished by the emergence of zero-energy modes within the skin states in the presence of the chiral symmetry. Skin states are formed when the system is nonreciprocal, where it is said nonreciprocal if the absolute values of the right- and left-going hoppings amplitudes are different. Indeed, the zero-energy edge modes emerge at both edges in the topological phase of the reciprocal non-Hermitian system. Then, analyzing higher-order topological insulators in nonreciprocal systems, we find the emergence of topological zero-energy modes within the skin states formed in the vicinity of one corner. Explicitly we explore the anisotropic honeycomb model in two dimensions and the diamond lattice model in three dimensions. We also study an electric-circuit realization of these systems. Electrical circuits with (without) diodes realize the nonreciprocal (reciprocal) non-Hermitian topological systems. Topological phase transitions are observable by measuring the impedance resonance due to zero-admittance topological corner modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.