Abstract

An interpolation problem is defined by a set of linear forms on the (multivariate) polynomial ring and values to be achieved by an interpolant. For Lagrange interpolation the linear forms consist of evaluations at some nodes, while Hermite interpolation also considers the values of successive derivatives. Both are examples of ideal interpolation in that the kernels of the linear forms intersect into an ideal. For an ideal interpolation problem with symmetry, we address the simultaneous computation of a symmetry adapted basis of the least interpolation space and the symmetry adapted H-basis of the ideal. Beside its manifest presence in the output, symmetry is exploited computationally at all stages of the algorithm. For an ideal invariant, under a group action, defined by a Gröbner basis, the algorithm allows to obtain a symmetry adapted basis of the quotient and of the generators. We shall also note how it applies surprisingly but straightforwardly to compute fundamental invariants and equivariants of a reflection group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.