Abstract
Ideal interpolation is a generalization of the univariate Hermite interpolation. It is well known that every univariate Hermite interpolant is a pointwise limit of some Lagrange interpolants. However, a counterexample provided by Shekhtman Boris shows that, for more than two variables, there exist ideal interpolants that are not the limit of any Lagrange interpolants. So it is natural to consider: Given an ideal interpolant, how to find a sequence of Lagrange interpolants (if any) that converge to it. The authors call this problem the discretization for ideal interpolation. This paper presents an algorithm to solve the discretization problem. If the algorithm returns “True”, the authors get a set of pairwise distinct points such that the corresponding Lagrange interpolants converge to the given ideal interpolant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.