Abstract

We consider two diffusively coupled populations of identical oscillators, where the oscillators in each population are coupled with a common dynamic environment. Existence and stability of a variety of stationary states are analyzed on the basis of the Ott-Antonsen reduction method, which reveals that the chimera state occurs under the diffusive coupling scheme. Furthermore, we find an exotic symmetry-breaking behavior, the so-called the heterosynchronous state, in which each population exhibits in-phase coherence, while the order parameters of two populations rotate at different phase velocities. The chimera and heterosynchronous states emerge from bistabilities of distinct states for decoupled population and occur as a unique continuation for weak diffusive couplings. The heterosynchronous state is caused by an indirect coupling scheme via dynamic environments and could occur for a finite-size system as well, even for the system that consists of one oscillator per population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.