Abstract
Asymmetric surface functionalization of complex nanoparticles to control their directional self-assembly remains a considerable challenge. Here, we demonstrated a conformal DNA design strategy for flexible remodeling of the surface of complex nanoparticles, taking Au nanobipyramids (AuNBPs) as a model. We sheathed one or both tips of AuNBPs into conformal DNA origami with an exceptionally accurate orientation control. Such asymmetrically and symmetrically distributed surface patches possess regioselective, sequence, and site-specific DNA binding capabilities. As a result, we realized a series of prototypical multicomponent "colloidal molecules" made of AuNBPs and Au nanospheres (AuNSs) with defined directionality and number of "bonding valence" as well as 1D and 3D hierarchical assemblies, e.g., inverse core-satellites of AuNBPs and AuNSs, side-by-side and tip-to-tip linear assemblies of AuNBPs, and 3D helical superstructures of AuNBPs with tunable twists. These findings inspire new opportunities for nanoparticle surface engineering and the high-order self-assembly of nanoarchitectures with higher complexity and broadened functionalities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have