Abstract

During Multi-Agent Path Finding (MAPF) problems, agentscan be delayed by unexpected events. To address suchsituations recent work describes k-Robust Conflict-BasedSearch (k-CBS): an algorithm that produces coordinated andcollision-free plan that is robust for up tokdelays. In thiswork we introducing a variety of pairwise symmetry break-ing constraints, specific tok-robust planning, that can effi-ciently find compatible and optimal paths for pairs of con-flicting agents. We give a thorough description of the newconstraints and report large improvements to success rate ina range of domains including: (i) classic MAPF benchmarks;(ii) automated warehouse domains and; (iii) on maps fromthe 2019 Flatland Challenge, a recently introduced railwaydomain wherek-robust planning can be fruitfully applied toschedule trains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call