Abstract

Multi-Agent Path Finding (MAPF) problems are traditionally solved in a centralized manner. There are works focusing on completeness, optimality, performance, or a tradeoff between them. However, there are only a few works based on spatial distribution. In this paper, we introduce ros-dmapf, a distributed MAPF solver. It consists of multiple MAPF sub-solvers, which---besides solving their assigned sub-problems---interact with each other to solve a given MAPF problem. In the current implementation, the sub-solvers are answer set planning systems for multiple agents, and are created based on spatial distribution of the problem. Interactions between components of ros-dmapf are facilitated by the Robot Operating System (ROS). The highlights of ros-dmapf are its scalability and a high degree of parallelism. We empirically evaluate ros-dmapf using the move-only domain of the asprilo system and results suggest that ros-dmapf scales up well. For instance, ros-dmapf gives a solution of length around 600 for a MAPF problem with 2000 robots in randomly generated 100×100 obstacle-free maps---a problem beyond the capability of a single sub-solver---within 7 minutes on a consumer laptop. We also evaluate ros-dmapf against some other MAPF solvers and results show that the system performs well. We also discuss possible improvements for future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call