Abstract
Solving Multi-Agent Path Finding (MAPF) problems optimally is known to be NP-Hard for both make-span and total arrival time minimization. Many algorithms have been developed to solve MAPF problems optimally and they all have different strengths and weaknesses. There is no dominating MAPF algorithm that works well in all types of problems and no standard guidelines for when to use which algorithm. Therefore, there is a need for developing an automatic algorithm selector that suggests the best optimal algorithm to use given a MAPF problem instance. We propose a model based on convolutions and inception modules by treating the input MAPF instance as an image. We further show that techniques such as single-agent shortest path annotation and graph embedding are very effective for improving training quality. We evaluate our model and show that it outperforms all individual algorithms in its portfolio, as well as an existing state-of-the-art MAPF algorithm selector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.