Abstract

The enolimine-ketoenamine tautomerism has been utilised to construct 2D covalent organic frameworks (COFs) with a higher level of chemical robustness and superior photoelectronic activity. However, it remains challenging to fully control the tautomeric states and correlate their tautomeric structure-photoelectronic properties due to the mobile equilibrium of proton transfer between two other atoms. We show that symmetry-asymmetry tautomerisation from diiminol to iminol/cis-ketoenamine can be stabilised and switched in a crystalline, porous, and dynamic 3D COF (dynaCOF-301) through concerted structural transformation and host-guest interactions upon removal and adaptive inclusion of various guest molecules. Specifically, the tautomeric dynaCOF-301 is constructed by linking the hydroquinone with a tetrahedral building block through imine linkages to form 7-fold interwoven diamondoid networks with 1D channels. Reversible framework deformation and ordering-disordering transition are determined from solvated to activated and hydrated phases, accompanied by solvatochromic and hydrochromic effects useful for rapid, steady, and visual naked-eye chemosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.