Abstract

We present some symmetrization results which we apply to the same abstract eigenvalue problem in order to show the existence of three different solutions which are invariant by Schwarz symmetrization. In particular, we introduce two different methods in order to prove the existence of multiple symmetric solutions. The first is based on the symmetric version of the Ekeland variational principle and the mountain pass theorem, while the latter consists of an application of a suitable symmetric version of the three critical points theorem due to Pucci and Serrin [17, 18], see Theorem 2.13 and its Corollary 2.14. Using the second method, we are able to improve some recent results of Arcoya and Carmona [1] and Bonnano and Candito [2]. The methods we present work also for different types of symmetrization, see Van Schaftingen [22].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.