Abstract

<abstract><p>Our objective in this study is to investigate the behavior of a nonlinear terminal fractional system under $ w $-Hilfer fractional derivative in different weighted Banach spaces. We examine the system's dynamics and understand the effects of different weighted Banach spaces on the properties of solutions, including existence, uniqueness, stability, and symmetry. We derive the equivalent integral equations and employ the Schauder and Banach fixed point theorems. Additionally, we discuss three symmetric cases of the system to show how the choice of the weighted function $ w(\iota) $ impacts the solutions and their symmetry properties. We study the stability of the solutions in the Ulam sense to assess the robustness and reliability of these solutions under various conditions. Finally, to understand the system's behavior, we present an illustrative example with graphs of the symmetric cases.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.