Abstract
In this work, the symmetry group and similarity reductions of the two-dimensional generalized Benney system are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Firstly, the vector field associated with the Lie group of transformation is obtained. Then the point transformations are proposed, which keep the solutions of the generalized Benney system invariant. Finally, the symmetry reductions and explicitly exact solutions of the generalized Benney system are derived by solving the corresponding symmetry equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.