Abstract

The (3+1)-dimensional generalized Boiti-Leon-Manna-Pempinelli equation, which describes the evolution of Riemann wave propagation in an in-compressible fluid along three mutually perpendicular axes, is investigated in this research article. The study encompasses the analysis of Lie symmetries, corresponding symmetry reductions, and conservation laws associated with the equation. The Lie symmetry method is employed to determine the infinitesimal generators of the considered equation. Furthermore, commutator table is generated, and symmetry groups corresponding to each infinitesimal generator are derived. By utilizing the similarity reduction technique, the original nonlinear partial differential equation is transformed into nonlinear ordinary differential equations. Then, generalized exp(−ϕ(ζ)) expansion technique is utilized to solve the reduced equations and estimate specific traveling wave solutions for the equation. Moreover, graphical representations are employed to illustrate the traveling wave solutions, employing suitable parameter values. Additionally, the multiplier approach is utilized to calculate conserved vectors for the equation under consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.