Abstract
In this present article, the new [Formula: see text]-dimensional modified Calogero-Bogoyavlenskii-Schiff (mCBS) equation is studied. Using the Lie group of transformation method, all of the vector fields, commutation table, invariant surface condition, Lie symmetry reductions, infinitesimal generators and explicit solutions are constructed. As we all know, an optimal system contains constructively important information about the various types of exact solutions and it also offers clear understandings into the exact solutions and its features. The symmetry reductions of [Formula: see text]-dimensional mCBS equation is derived from an optimal system of one-dimensional subalgebra of the Lie invariance algebra. Then, the mCBS equation can further be reduced into a number of nonlinear ODEs. The generated explicit solutions have different wave structures of solitons and they are analyzed graphically and physically in order to exhibit their dynamical behavior through 3D, 2D-shapes and respective contour plots. All the produced solutions are definitely new and totally different from the earlier study of the Manukure and Zhou (Int. J. Mod. Phys. B 33, (2019)). Some of these solutions are demonstrated by the means of solitary wave profiles like traveling wave, multi-solitons, doubly solitons, parabolic waves and singular soliton. The calculations show that this Lie symmetry method is highly powerful, productive and useful to study analytically other nonlinear evolution equations in acoustics physics, plasma physics, fluid dynamics, mathematical biology, mathematical physics and many other related fields of physical sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.