Abstract
The two-body problem in central fields (reducible to a central-force problem) models a lot of concrete astronomical situations. The corresponding vector fields (in Cartesian and polar coordinates, extended via collision-blow-up and infinity-blow-up transformations) exhibit nice symmetries that form eight-element Abelian groups endowed with an idempotent structure. All these groups are isomorphic, which is not a trivial result, given the different structures of the corresponding phase spaces. Each of these groups contains seven four-element subgroups isomorphic to Klein?s group. These symmetries are of much help in understanding various characteristics of the global flow of the general problem or of a concrete problem at hand, and are essential in searching for periodic orbits.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have