Abstract
An involutive diffeomorphism σ of a connected smooth manifold M is called dissecting if the complement of its fixed point set is not connected. Dissecting involutions on a complete Riemannian manifold are closely related to constructive quantum field theory through the work of Dimock and Jaffe/Ritter on the construction of reflection positive Hilbert spaces. In this article we classify all pairs (M, σ), where M is an irreducible connected symmetric space, not necessarily Riemannian, and σ is a dissecting involutive automorphism. In particular, we show that the only irreducible, connected and simply connected Riemannian symmetric spaces with dissecting isometric involutions are $$ {\mathbbm{S}}^n $$ and ℍn, where the corresponding fixed point spaces are $$ {\mathbbm{S}}^{n-1} $$ and ℍn − 1, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.