Abstract
The geometry of Riemannian symmetric spaces is really richer than that of Riemannian homogeneous spaces. Nevertheless, there exists a large literature of special classes of homogeneous Riemannian manifolds with an important list of features which are typical for a Riemannian symmetric space. Normal homogeneous spaces, naturally reductive homogeneous spaces or g. o. spaces are some interesting examples of these classes of spaces where, in particular, the Jacobi equation can be also written as a differential equation with constant coefficients and the osculating rank of the Jacobi operator is constant. Compact rank one symmetric spaces are among the very few manifolds that are known to admit metrics with positive sectional curvature. In fact, there exist only three non-symmetric (simply-connected) normal homogeneous spaces with positive curvature: V 1 = S p (2)/SU(2), V 2 = SU(5)/(S p (2) × S 1 ), given by M. Berger and the Wilking’s example V 3 = (SU(3) SO(3))/U • (2). Here, we show some geometric properties of all these spaces, properties related with the existence of isotropic Jacobi fields and the determination of the constant osculating rank of the Jacobi operator. It provides different way to ”measure” of how they are so close or not to the class of compact rank one symmetric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.