Abstract
We give the equations of the n-th symmetric product X^n/S_n of a flat affine scheme X=mathrm {Spec},A over a commutative ring F. As a consequence, we find a closed immersion into the coarse moduli space parameterizing n-dimensional linear representations of A. This is done by exhibiting an isomorphism between the ring of symmetric tensors over A and the ring generated by the coefficients of the characteristic polynomial of polynomials in commuting generic matrices giving representations of A. Using this we derive an isomorphism of the associated reduced schemes over an infinite field. When the characteristic is zero we show that this isomorphism is an isomorphism of schemes and we express it in term of traces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.