Abstract
We consider the Laplace–Beltrami operator in tubular neighborhoods of curves on two-dimensional Riemannian manifolds, subject to non-Hermitian parity and time preserving boundary conditions. We are interested in the interplay between the geometry and spectrum. After introducing a suitable Hilbert space framework in the general situation, which enables us to realize the Laplace–Beltrami operator as an m-sectorial operator, we focus on solvable models defined on manifolds of constant curvature. In some situations, notably for non-Hermitian Robin-type boundary conditions, we are able to prove either the reality of the spectrum or the existence of complex conjugate pairs of eigenvalues, and establish similarity of the non-Hermitian m-sectorial operators to normal or self-adjoint operators. The study is illustrated by numerical computations.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have