Abstract
We have performed lattice Monte Carlo simulations to study the self-assembled morphology of symmetric diblock copolymers in nanopores. The pore diameter and surface preference are systematically varied to examine their effects on the chain conformations, structures of various morphologies, and their phase transition. Various ensemble-averaged profiles and quantities are used to provide detailed information about the system. The simulation results are also compared with the predictions of a strong-stretching theory commonly used in the literature. Such comparisons reveal the deficiencies of this theory in describing the morphologies under cylindrical confinement, and call for further theoretical studies using more accurate formalisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.