Abstract
AbstractSummary: We report the first Monte Carlo simulations on the thin‐film morphology of symmetric diblock copolymers confined between either symmetrically or antisymmetrically stripe‐patterned surfaces. Under suitable surface configurations (where the lamellae can comply with the surface patterns and can have a period close to the bulk lamellar period L0), tilted lamellae are observed for film thicknesses D ≥ 2L0; the checkerboard morphology is obtained for smaller film thicknesses. The A‐B interfaces in the tilted lamellae are basically perpendicular to the surfaces in their immediate vicinity, and exhibit undulations away from them. In some cases, the severe frustration imposed by the two patterned surfaces leads to irregular or unexpected morphologies, which represent locally stable states. The efficient sampling of our expanded grand‐canonical Monte Carlo technique enables us to observe more than one locally stable morphologies and the flipping between them during a single simulation run.Tilted lamellae between symmetrically patterned surfaces (perpendicular to z) with a surface pattern period of 1.5L0 and a film thickness of 2.67L0. L0 is the bulk lamellar period and the black curves mark the A‐B interfaces.imageTilted lamellae between symmetrically patterned surfaces (perpendicular to z) with a surface pattern period of 1.5L0 and a film thickness of 2.67L0. L0 is the bulk lamellar period and the black curves mark the A‐B interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.