Abstract
An efficient systematic procedure is provided for symbolic computation of Lie groups of equivalence transformations and generalized equivalence transformations of systems of differential equations that contain arbitrary elements (arbitrary functions and/or arbitrary constant parameters), using the software package GeM for Maple. Application of equivalence transformations to the reduction of the number of arbitrary elements in a given system of equations is discussed, and several examples are considered. The first computational example of generalized equivalence transformations where the transformation of the dependent variable involves an arbitrary constitutive function is presented.As a detailed physical example, a three-parameter family of nonlinear wave equations describing finite anti-plane shear displacements of an incompressible hyperelastic fiber-reinforced medium is considered. Equivalence transformations are computed and employed to radically simplify the model for an arbitrary fiber direction, invertibly reducing the model to a simple form that corresponds to a special fiber direction, and involves no arbitrary elements.The presented computation algorithm is applicable to wide classes of systems of differential equations containing arbitrary elements.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have