Abstract
The three main objects that serve as the foundation of quantum mechanics on phase space are the Weyl transform, the Wigner distribution function, and the $\star$-product of phase space functions. In this article, the $\star$-product of functions on the Euclidean motion group of rank three, $\mathrm{E}(3)$, is constructed. $C^*$-algebra properties of $\star_s$ on $\mathrm{E}(3)$ are presented, establishing a phase space symbol calculus for functions whose parameters are translations and rotations. The key ingredients in the construction are the unitary irreducible representations of the group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.