Abstract
Phase space optics allows the four-dimensional simultaneous visualization of both space and spatial frequency optical information. The Wigner distribution function (WDF) is a common characterization of the phase space. Compared with the two-dimensional complex amplitude coherent optical field, the WDF can characterize optical field with arbitrary coherent states due to its higher dimensions. It is especially advantageous for the representation of partially coherent optical fields. The WDF is real and may have negative values, which are the result of phase-space interference. In this paper, an improved phase-space retrieval method is demonstrated. First, capture three-dimensional intensity focal stack. Then, phase space tomography (PST) combined with a non-linear iterative projection algorithm is conducted to reconstruct the whole WDF. We further analyzed the effect of the microscopy imaging system, i.e., the illumination aperture and the aperture of objective lens effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.