Abstract
ABSTRACT A symbiotic microalgal-bacterial system may be an optional technology for wastewater treatment. It was composed of microalgae and activated sludge and established in the SBR to explore the effect of different dosing ratios of algae and sludge on the removal of nitrogen and phosphorus from simulated wastewater containing ammonium. It can be seen from the result that varied algae–sludge dosing ratios had a higher removal effect on COD removal, but the difference was not significant. The algal-bacterial symbiosis system had a 100% removal rate for ammonium removal on the 8th day. Relatively speaking, the removal of nutrients and related mechanisms vary with environmental conditions (inoculation rate). In general, when the additive ratio was 5:1 (algae: AS), the removal rate of TN and TP was the highest, reaching 53.85% and 85.13% in the shortest time (14 days), among them, the removal rate of ammonium and COD was 100%, and the reduction rates of Nitrite nitrogen and Nitrate nitrogen were 362.99% and 73.42%, respectively. In addition, 16S rDNA gene analysis results demonstrated that the microbial community in the reactor with algal sludge inoculation ratio of 5:1 had differences in three stages of the initial reaction, the middle reaction and the end of the reaction. Comamonadaceae, Flavobacterium, Paenarthrobacter, Mesorhizobium, Nitrobacter were enriched during the reaction operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.