Abstract

Symbiotic technology is a useful technique for industrial cleaner production and sustainability. A comprehensive assessment method is necessary for the selection and update of advanced symbiotic technologies in technology catalogues. However, there has been no studies focusing on the assessment of symbiotic technology, and the uncertainty of technical performances has been rarely considered. Therefore, this research adopts a multi-criteria decision-making method—entropy TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution ) to assess 22 symbiotic technologies in iron and steel industrial network. 6 types of criteria are set to comprehensively assess the comprehensive performance of each technology. In addition, an iron and steel enterprise with 3 Mt annual output is taken as a case to apply in the technical selection schemes and evaluate technical effects. Finally, a random sampling method – Latin Hypercube Sampling is adopted to conduct uncertainty analysis. The results show that: (1) The symbiotic technologies utilizing by-products from ironmaking process have the overall optimal performance, while the ones from sintering process have the worst. The medium of assessment result ranges are lower than the initial ones. (2) Based on the technical assessment results, 12 symbiotic technologies are selected to apply in the case iron and steel enterprise under 3 types of preferences. The environmental manager and integrated preference schemes have the same technologies, but 5 of them are different from the enterprise preference schemes, but all of them can reach significant energy, environment, and economic benefits. The findings are hoped to apply to the formulation and issue of symbiotic technology catalogues, and help enterprises to select effective technical schemes to improve their cleaner production level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call