Abstract
Interdomain symbioses with bacteria allow insects to take advantage of underutilized niches and provide the foundation for their evolutionary success in neotropical ecosystems. The gut microbiota of 13 micro-allopatric tropical pentatomid species, from a Costa Rican lowland rainforest, was characterized and compared with insect and host plant phylogenies. Like other families within the Pentatomomorpha, these insects (within seven genera—Antiteuchus, Arvelius, Edessa, Euschistus, Loxa, Mormidea, and Sibaria) house near-monocultures of gamma-proteobacteria in midgut crypts, comprising three distinct lineages within the family Enterobacteriaceae. Identity of the dominant bacteria (78–100% of the recovered 16S rRNA genes) was partially congruent with insect phylogeny, at the level of subfamily and tribe, with bacteria closely related to Erwinia observed in six species of the subfamily Pentatominae, and bacteria in a novel clade of Enterobacteriaceae for seven species within the subfamilies Edessinae and Discocephalinae. Symbiont replacement (i.e., bacterial “contamination” from the environment) may occur during maternal transmission by smearing of bacteria onto the egg surfaces during oviposition. This transmission strategy was experimentally confirmed for Sibaria englemani, and suspected for four species from two subfamilies, based on observation of egg probing by nymphs. Symbiont-deprived S. englemani, acquired via egg surface sterilization, exhibited significantly extended second instars (9.1 days compared with 7.9 days for symbiotic nymphs; p = 0.0001, Wilcoxon's rank with Bonferroni correction), slower linearized growth rates (p = 0.005, Welch 2-sample t-test), and qualitative differences in ceca morphology, including increased translucency of crypts, elongation of extracellular cavities, and distribution of symbionts, compared to symbiotic nymphs. Combined, these results suggest a role of the symbiont in host development, the reliable transference of symbionts via egg surfaces, and a suggestion of co-evolution between symbiont and tropical pentatomid host insects.
Highlights
Phytophagous insects represent one of the most diverse groups of metazoans, comprising a significant proportion of animal biodiversity in terrestrial biomes (Gilbert and Smiley, 1978)
To determine the identity of microbes associated with each stinkbug species, 16S ribosomal RNA sequences were amplified from ceca DNA extracts, as well as extracts from whole eggs and nymphs (Figure 2)
Bacteria closely related to the cultured genus Erwinia were dominant within the subfamily Pentatominae, based on 98% similarity, including Sibaria englemani, Mormidea collaris, M. aff. ypsilon, Euschistus sp., Arvelius porrectispinus, and Loxa sp., representing 78–98% of the recovered 16S rRNA sequences associated with each specimen (Figure 2, Table 1)
Summary
Phytophagous insects represent one of the most diverse groups of metazoans, comprising a significant proportion of animal biodiversity in terrestrial biomes (Gilbert and Smiley, 1978). In general, have been the subject of numerous studies, and encompass several families within the Heteroptera, including Acanthostomidae, Coreidae, Plataspidae, and Pentatomidae These insects are important contributors to overall herbivory in all major biogeographic provinces and are well-known agriculture pests, causing damage to crops by piercing plant tissues (Panizzi, 1997; Corrêa-Ferreira and de Azevedo, 2002; Golden et al, 2006; Hosokawa et al, 2007). They impact host plant primary productivity and fecundity positively www.frontiersin.org
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have