Abstract

The goal of System Level Formal Verification is to show system correctness notwithstanding uncontrollable events (disturbances), as for example faults, variation in system parameters, external inputs, etc. This may be achieved with an exhaustive Hardware In the Loop Simulation based approach, by considering all relevant scenarios in the System Under Verification (SUV) operational environment. In this paper, we present SyLVaaS, a Web-based tool enabling Verification as a Service (VaaS). SyLVaaS implements an assume-guarantee approach to the verification problem outlined above. SyLVaaS takes as input a high-level model defining the SUV operational environment and computes, using parallel algorithms deployed in a cluster infrastructure, a set of highly optimised simulation campaigns, which can be executed in an embarrassingly parallel fashion on a set of Simulink instances, using a platform independent Simulink driver downloadable from the SyLVaaS Web site. As the actual simulation is carried out at the user premises (e.g., in a private cluster), SyLVaaS allows full Intellectual Property protection on the SUV model and the user verification flow. The simulation campaigns computed by SyLVaaS randomise the verification order of operational scenarios and this enables, at anytime during the parallel simulation activity, the estimation of the completion time and the computation of an upper bound to the Omission Probability, i.e., the probability that there is a yet-to-be-simulated operational scenario which violates the property under verification. This information supports graceful degradation in the verification activity. We show effectiveness of the SyLVaaS algorithms and infrastructure by evaluating the system on industry-scale input related to the verification of the Fuel Control System (FCS) model in the Simulink distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.