Abstract

A general theory for companding log domain filters is proposed which combines not only exponential mappings, but also a new translational mapping approach which guarantees suitable operating conditions in any log domain filter. The filter equations resulting from the use of the theory ultimately contain translinear terms which are known to be realizable using translinear techniques. A discussion of the design of the companding filters, regarding the economical use of translinear loops and the convenient selection of system parameters, is offered which leads to first- and second-order circuit designs. Finally, the noise performance of an example design is investigated using a carefully crafted large-signal simulation technique, showing clearly the advantage of the companding filter approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.